
	

Suzan	Verberne	 27.03.2019	 1	

Practical	session	week	6	
Data	Science	course	

This	is	not	a	hand-in	assignment.	Bring	your	answers	to	the	next	lecture.	You	need	this	exercise	for	
the	follow-up	exercises.	Make	sure	you	finish	it.	

Goals	of	this	exercise:	

• Getting	to	know	the	clickbait	data	set	
• Get	somewhat	more	acquainted	with	dataframes	
• Learn	how	to	pre-process	semi-structured	data	to	be	used	in	a	supervised	learning	task	
• Become	acquainted	with	supervised	learning	in	Python	with	scikit-learn	

Clickbait	is	Internet	content	whose	main	purpose	is	to	attract	attention	and	encourage	visitors	to	
click	on	a	link	to	a	particular	web	page.	

We	are	going	to	conduct	a	series	of	classification	experiments	with	the	Facebook	data	(news	and	
clickbait).	The	research	questions	that	will	address	in	the	following	weeks	are:	

• To	what	extent	is	it	possible	automatically	distinguish	a	clickbait	post	from	a	mainstream	
news	post	on	Facebook?	

• What	features	are	the	most	important	in	making	this	distinction?	

	

Preliminaries	
The	practical	session	of	week	1	(data	frames	in	R	and	Python)	

Make	sure	you	have	installed	Python	3	and	the	following	packages	(probably,	it	will	also	work	with	
Python	2.7	but	I	cannot	guarantee	the	compatibility	of	the	packages):	

• pandas	
• numpy	
• scikit-learn	

On	linux,	the	command	for	installing	Python	packages	is:	

pip install -U pandas numpy scikit-learn

(the	U	means	‘update’)	

	

It	might	be	useful	to	work	in	ipython	(or	a	jupyter	notebook)	so	that	you	don’t	have	to	run	the	
complete	script	everytime	(reading	the	data	takes	time).	

	

Suzan	Verberne	 27.03.2019	 2	

Tasks	

1.	Preparation	

1. Download	the	following	data	files	n_fb_post.csv	and	c_fb_post.csv	(together	as	zip-file	
on	Blackboard)	

c_fb_post	is	a	collection	of	posts	published	on	the	Facebook	pages	of	clickbait	sites.	n_fb_post	is	a	
collection	of	posts	published	on	the	Facebook	pages	of	mainstream	news	sites.	

	

2. Import	the	csv	files	in	Python	as	Pandas	dataframes.	Make	sure	you	store	the	first	row	of	the	
csv	files	as	column	header	(so	that	you	can	refer	to	a	column	by	using	the	column	name).	

	

2.	Data	exploration	

3. Answer	the	following	questions	about	the	data:	
a. How	many	data	points	and	how	many	columns	do	the	datasets	have?		
b. What	are	the	column	names?	

	
4. Print	the	unique	values	in	the	column	‘fb_page’	to	see	which	pages	are	included	in	the	two	

datasets.	

	

3.	Pre-processing	the	data	into	a	feature	matrix	

X	and	y	are	the	variable	names	commonly	used	for	the	feature	matrix	(X)	and	the	array	(column)	with	
class	labels	(y):	

5. Initialize	the	feature	matrix:	

X = []

And	initialize	the	label	array:	

y = []

6. We	are	going	to	create	a	feature	vector	for	every	item	in	the	clickbait	and	news	dataframes.			
	
Create	a	loop	that	walks	through	both	dataframes.	For	each	row	in	the	data,	create	a	4-
dimensional	vector	with	the	following	features:	

vector = [row['post_type'],row['num_reaction_cleaned'],row['num_comment_cleaned'],
row['num_share_cleaned']]

	 	

Append	the	vector	to	the	feature	matrix:	

X.append(vector)

	

Suzan	Verberne	 27.03.2019	 3	

(Hint:	you	will	need	to	add	a	function	to	replace	categorical	values	before	adding	them	to	X:	
https://scikit-learn.org/stable/modules/preprocessing.html#encoding-categorical-features)	

After	you	filled	X,	store	it	as	a	numpy	array:	

X = numpy.asarray(X)

	

7. For	the	clickbait	items,	add	the	value	‘c’	to	the	label	array	y.	For	the	news	items,	add	the	
value	‘n’.	Make	sure	that	the	length	of	y	is	equal	to	the	length	of	X:	there	is	a	label	for	each	
item	in	the	feature	matrix.	

	

4.	Classification	

8. X	and	y	now	contain	the	complete	data.	For	training	and	validating	classifiers,	we	need	a	
train-test	split.	Use	the	train_test_split	function	in	scikit-learn.cross_validation	to	
create	four	files:	X_train, X_test, y_train, y_test.	Use	a	random	20%	of	the	data	as	
test	set.	
	

9. Now,	let’s	try	our	first	classifier:	LinearSVC	(default	settings).	You	can	find	the	documentation	
on	http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html		

a. initiate	the	classifier:	clf = LinearSVC()	
b. fit	the	training	data	
c. predict	values	for	the	test	data	and	assign	them	to	a	variable	y_pred	

	
10. Use	the	function	classification_report	from	sklearn_metrics to	evaluate	your	

classifier.What	is	the	precision	and	recall	that	you	obtain	with	your	classifier?		

