
	

Suzan	Verberne	 03.04.2019	 1	

Practical	assignment	week	7	
Data	Science	course	

This	is	not	a	hand-in	assignment.	Bring	your	answers	to	the	next	lecture.	You	need	this	exercise	for	
the	follow-up	exercises.	Make	sure	you	finish	it.	

Goals	of	this	exercise:	

• Learn	how	to	pre-process	text	data	to	be	used	in	a	supervised	learning	task	
• Learn	to	inspect	sparse	feature	matrices
	

	

Preliminaries	
• The	data	frames	n_fb_post	and	c_fb_post.	
• Your	experience	with	feature	matrices,	supervised	learning,	and	evaluation	from	week	6.	

	

We	are	going	to	follow-up	on	the	classification	experiments	with	the	Facebook	data	(news	and	
clickbait).	The	research	questions	that	will	address	in	the	following	weeks	are:	

• To	what	extent	is	it	possible	to	automatically	distinguish	a	clickbait	post	from	a	mainstream	
news	post	on	Facebook?	

• What	features	are	the	most	important	in	making	this	distinction?	

	

The	classification	results	with	the	four	features	that	we	used	in	week	6	(post_type,	
num_reaction_cleaned,	num_comment_cleaned,	num_share_cleaned)	were	not	very	good.	This	
week	we	will	experiment	with	the	information	in	the	text	column	status_message_without_tags.	

	

Tasks	
This	week,	we	will	set	up	the	classification	task	using	the	column	status_message_without_tags.	
Make	a	copy	of	your	script	from	week	6	and	adapt	the	code	for	this	week’s	exercise.	

	

We	are	going	to	create	a	sparse	feature	matrix	in	which	words	are	features.	This	requires	first	to	get	
all	texts	from	the	column	status_message_without_tags	in	an	array.	

1. Initialize	the	array	texts	

	

Suzan	Verberne	 03.04.2019	 2	

2. Adapt	the	loop	that	walks	through	both	dataframes.	For	each	row	in	the	data,	store	the	
content	of	the	column	status_message_without_tags in	the texts array.	Keep	the	code	
that	stores	the	labels	‘n’	and	‘c’	in	the	label	array	y.	
	

3. Use	the	function	CountVectorizer		in	sklearn	to	initiate	an	object	word_vectorizer	that	
transforms	the	texts	to	feature	vectors	(look	up	what	the	function	min_df=4	means):	

from sklearn.feature_extraction.text import CountVectorizer
word_vectorizer = CountVectorizer(analyzer='word', min_df=4)

	

4. Use	the	function	fit_transform	from	the	word_vectorizer	to	transform	the	texts	array	
into	a	feature	matrix	X		
Check	the	dimensionality	of	your	data	using	print(X.shape)
View	the	feature	set	using	print(word_vectorizer.vocabulary_)	
	

5. Set	up	your	classification	experiment	by	splitting	the	data	(like	in	week	6)	
Initiate	and	fit	LinearSVC,	and	predict	values	for	the	test	set	(like	in	week	6)	
Run	the	evaluation	function	classification_report	to	evaluate	your	classifier	(like	in	week	
6)	
	

6. How	does	the	result	compare	to	the	result	that	you	got	with	the	4	simple	features?	

