Challenges in Building an Automatic ICD-10 Codes Recognition System

Yuting Hu
MSc Bioinformatics
Leiden University
Project Summary

- Company: Performation
- Data source: Diakonessenhuis 2018

Patients health records
- Text data
 - discharge letters
 - care activities
 ...
- Structured data
 - age
 - time of stay
 ...

ICD-10 codes
- Medical classification list by the WHO
- Unique code per disease
- Hierarchical structure
Project Summary

Previous Case Study
- Data of year 2017
- Only text data (discharge letters)
- Text cNN – 0.87 f1 scores
- Main diagnosis
- Only one specialty group (12k)

This Case Study
- Data of year 2018 (Latest at that time)
- Combine two types of data
- Mainly focus on non-deep classifiers
- Main diagnosis
- Only one specialty group (22k)

Group of diseases/ doctors
Different codes per hospital
Noted in the health records

Main diagnosis – 1 disease/ ICD-10
Secondary diagnosis – 0 or multiple
Data Collection & Analysis

• **Strict data access & Messy data**
 - Can only be used under the internal server
 - Managed and collected with SQL commands

• **Basic Analysis**

 General info
 - Largest specialty group 20% of whole dataset (22,255 out of 107,462 samples)
 - 204 classes (ICD-10)
 - 75% samples gathered at the top 40 classes (really long-tail)

 Class label transformation
Data Pre-processing

• Clean text data
• Encoding non-numeric structured data – one-hot encoding first
• Analyze the data again

Text Data
- Min, Max, Avg text length:
 7, 1881 and 152 words

Structured Data
- Super sparse (after one-hot encoding)
- Too many DBC codes types

• Apply Hash encoding on DBC codes
 - FeatureHasher() in scikit-learn
 - hash to 5 features

Medical care product code
One code per 120 days (1 or multiple)
Important for diagnosis
Data Pre-processing

- Split train-test-valid set (0.8/0.1/0.1)

- Resampling
 - random-oversampling
 - only on train set

Text Data

Vectorization
- tf-idf for shallow models
- word2vec for deep models

Structured Data

Max-min scaler
- important for some classifiers
- meaningless to numeric but nominal data
- fit on train, then transform on test/valid set

- Analyze the data after all pre-processing
 - samples in each class: same, 6102
 - samples in training set: 17,804 → 250,182
How to Combine Two Types of Data?

• Directly connect data together
 - tried in previous case study
decrease signal to noise ratio (text classifiers)

• Classifier Combiner
 - text classifiers + structure classifiers
 - two combining rules

 Combiner classifier: Logistic Regression classifier

Apply trained base-classifiers on both train and test sets
Apply trained base-classifiers only on test sets
Classifier Models

• Shallow models
 - Naïve Bayes Classifier: 2-gram, alpha
 - SVM Classifier: 2-gram, C, linear/SGD

• Deep models
 - Text cNN
 Convolutional neural networks for sentence classification.
 Yoon Kim, 2014.

• Boost models
 - Fast Text
 - Xgboost: only on structured data
Results

Optimal Model

• Previous model – 0.73 f1
• SVM(Linear) – 0.98 f1 score 😊
• Over-sampling improved a lot (0.74 f1 before)

Classifier Combiner

• Did not work well 😞 - less than 0.4 f1
• Possible reasons
 - ‘Prediction’ more than ‘Recognition’
 - Need more data types & more samples
Possible Future Work

• Extension of task
 - whole dataset/new dataset
 - secondary diagnosis

• The special DBC code format

 CHI-11-318-020107056

• Transfer learning?
Main Challenges

• Strict data access
• Low computing power
• Mixed & messy structured data
• High dimensionality & sparse
• Long-tail
• Combine two types of data